top of page

Search


How Bigger Models Get Better
This article explores the groundbreaking findings of Kaplan et al. on scaling laws for neural language models. It explains how model performance improves predictably with increased model size, dataset size, and compute budget, highlighting power-law relationships. The piece discusses implications for efficient AI training, optimal resource allocation, overfitting avoidance, and future research directions.

Juan Manuel Ortiz de Zarate
Apr 3010 min read
3 views
bottom of page